CS 188: Atrtificial Intelligence
Spring 2010

Lecture 11: Reinforcement Learning
2/23/2010

Pieter Abbeel — UC Berkeley

Many slides over the course adapted from either Dan Klein,
Stuart Russell or Andrew Moore

Announcements

= PO/P1/W1/W2in glookup
= |f you have no entry, etc, email staff list!
= If you have questions, see one of us or email list.

= W1, W2: can be picked up from 188 return box in 283
Soda LN

= W3: Utilities --- Due Thursday. ¢~

= Recall: readings for current material o
= Online book: Sutton and Barto

http://www.cs.ualberta.ca/~sutton/book/ebook/the-book.html

Announcements |l

= Section:
= 101: Tue 3-4pm, 285 Cory
= 104: Tue 4-5pm, 285 Cory a—
= 102: Wed 11-noon, 285 Cory
= 103: Wed noon-1pm, 285 Cory

MDPs recap

= Markov decision processes:

= States S

= Actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s.,a.s’) (and discount v)
» Startstate s, “(6(0.1)
= Solution methods:

= Value iteration (VI)

= Policy iteration (Pl)

= Asynchronous value iteration
= Current limitations:

= Relatively small state spaces

= Assumes T and R are known®—

MDP Example: Grid World

The agent lives in a grid
Walls block the agent’s path 3
The agent’s actions do not always

go as planned:
= 80% of the time, the action North 2
takes the agent North

(if there is no wall there) 4 @
*10% of the time, North takes the i

agent West; 10% East
= If there is a wall in the direction the
agent would have been taken, the
agent stays put @
Rewards come at the end
Goal: maximize sum of rewards

Q (EN

MDP Example: Grid World

, = MDP = (S, A, T, R, sg, 7)
: =1 Set of states S= (l,l].(‘H,(I.‘!),Ua),l‘ll\.U}l,(t,l-),q;s)'
g () (42), 3V
e Setof actionsA = I\H) E, ;,WS
o . (<t
: ﬁ : Transition model T ~> 1 ($.&s')= PLstlsa)
=_E| } T, N, Q) = ok Ransh R
E | Tz R Gy)=+
P { T (e, () zot R ((!,\Jl/‘\, (==
T (o, G3) =0 g =0 {r ol dhen
TN, bty =o
Initial state s, = (Ls1) cases

Discount factory < Q. 9

Value lteration

=| Vi(s) : the expected discounted sum of rewards accumulated
w en starting from state s and acting optimally for a horizon of i
time steps. - S

—9= Start with V(s) = 0, which we know is right (why?)
* Given V, calculate the values for all states for horizon i+1: 4"

O~
—>V; §) — Tsa R(s,a,s") + s a—

= This is called a value update or Bellman update
= Repeat until convergence

= Theorem: will converge to unique optimal values@—
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Complete procedure

1. Run value iteration (off-line)

Returns V, which (assuming sufficiently many iterations
is a good approximation of V*)

2. Agent acts.

Attime t the agent is in state s, and takes the action a;:

~N— "N

~>argmaxy T(st,a,s)[R(st,a,5) +9V()] (<=
V\/—\/

MDPs recap

= Markov decision processes:
® States 8
= Actions A
Transitions P(s's.a) (or T(s,a,s87))
Rewards R(s.a,s’) (and discount)
Start state s,
= Solution methods:
G Value iteration (V1)
- Policy iteration (Pl)
= Asynchronous value iteration
= Current limitations:
—= Assumes T and R are known
= Relatively small state spaces — nwexk (“'\‘*N

Reinforcement Learningf/

= Reinforcement learning:
= Still assume an MDP:
= Asetof statess e S
= A set of actions (per state) A
= A model T(s,a,s’) J
= Areward function R(s,a,s’).
= Still looking for a policy 7i(s)

= New twist: don’'t know T or R
= |.e. don’'t know which states are good or what the actions do
= Must actually try actions and states out to learn

Example: learning to walk

Before learning (hand-tuned)

One of many learning runs

After learning
[After 1000
field
traversals]

[Kohl and Stone, ICRA 2004]

Passive Learning

1O~

= Simplified task
= You don’t know the transitions T(s,a,s‘)drj At t

= You don't know the rewards R(s,a,s’) @a— I I P

t

= You are given a policy n(s) <= Poss e Loarny 2 s
= Goal: learn the state values f— 'A%

= ... what policy evaluation did <¢—

= In this case:
= Learner “along for the ride”
= No choice about what actions to take <#&—
= Just execute the policy and learn from experience #—
=_We'll get to the active case soon

6 LEThis is NOT offline planning! You actually take actions in the
world and see what happens...

Recap: Model-Based Policy Evaluation

= Simplified Bellman updates to
calculate V for a fixed policy:
= New V is expected one-step-look-
ahead using current V
= Unfortunately, need T and R

T — (o,qo,sl eo‘
~§Vo(8)—0 &CS(,G.,:‘Q)\‘
,gﬂ _:),‘,7.7
3 V_,_l(s) <—XZT(6 m(s), ')[R(b 7(s),8) + V()]
s

VoW iTWq"‘*’“ (&L\
R wbnowm

14

Example: Model-Based Learning

= Episodes:
.,(11)up-1 (1,1)up-1
-1 1,2) up -1
(1,)up (1,2) up
) (1,3) right -1
) 2,3) right -1
@2 ‘
(3,2)up -1
(4,2) exit -100
(done) T(<3,3>,[Eh}, <4,3>)=1/3
(4.3) exit +100 T(<2,3>, right, <3,3>) =2/2
(done)

Model-Based Learning

= |dea:
—== Learn the model empirically through experience
= Solve for values as if the learned model were correct

= Simple empifical model learninge—
= Count outcomes for each s,a -
= Normalize to give estimate of T(s,a,s’) '
= Discover R(s,d,s’) when we experience (s,a,s)s—

‘ '

= Solving the MDP With the learned model
= lterative policy evaluation, for example ~ S#):S A\‘\
(- S

VL1 (8) — S T(s,m(s),)[R (s, 7(5), ') + V()]

Model-Free Learning

= Want to compute an expectation weighted by P(x):
— Elf@) =%, Pa)f(z)
= Model-based: estimate P(x) from samples, compute expectation
—> xz; ~ P(x)

& B T)| =~ B{E x
Pla) = o) L)~ e 2O

= Model-free: es ma&e expec}atlon dlwctly from samples
k-]

x; ~ P(x) E[f(=~ X fi)
—_— [WS

= Why does this work? Because samples appear with the right
frequencies!

sl = L7 L Z f(x) /
Example: Direct Estimation

= Episodes: ¢
(1,1)up-1 (1,1) up -1
(1,2) up -1 (1,2) up -1
(1,2) up -1 (1,3) right -1 1
(1,3) right -1 23 rlgh@

[9 @3 right(h) -l ! 2 : ¢ox
q’]«ﬁﬂrighti (32)up® y=1,R=-1

(3,2)up-L (4,2) exn. V(Cl W) &~ 3 (‘3(,_. ~e3)= -3. §
Ojjf—m right -1 (done) 193

(4.3) exit +100 v {@f}ri@%ﬁ@# 9 eac2) Y B

(done) 5‘5 V(3,3) ~ (99 + 97 + -102) /3=31.3

Sample-Based Policy Evaluation?

("_/\ ST

L— Vi 1(s) ZT(s 7(s),s") [R(s,m(5),s") + V(5]
| o \:/u

* Whoneeds T and R? Approximate the
expectation with samples (drawn from T!)

é sample; = R(s.ﬂ'(s) s’l) + 'yV-’T(sll) AN
sampleg = R(s TK'(S) 52) + YV (sh) <

sampl(’k = R(s,7(s),s},) + Vi (s})

Almost! But we only’

nd V i+1 (s) — Z sample; actually make proggess

L_i__,_)

when we move lb"vfi
20

-+ Temporal-Difference Learning Exponential Moving Average

“"

"
"o L

= Big idea: legfn from every experience! = Exponential moving average ‘/
= Update V(s) each time we experience (s,a,s’,r) s = Makes recent samples more important
= Likely s’ will contribute updates more often 7(s)
s, 1(s) _ Tt (1—a) ay g+ 1 —)* @y ot...
= Temporal difference learning Ty — =)
« Policy still fixed! ! — I+ -a)+(1-a)?+...

= Move values toward value of whatever
SUCCEeSSOr occurs: running average!

f Forgets about the past (distant past values were wrong anyway)
R(s,7(s),s") +1V™(s)

l = Easy to compute from the running average
Sample of V(s): sample =

o = Tn=(1—-0a) Tn1+0a Tn
Update to V(s): V7™(s) «— (1 —a)V™(s) + (a)sample

— = Decreasing,learning rate can give converging averages <—
Same update: V7T(s) «— V7™(s) +&| sample — V"™ (s))

TD etrer

21

22

L
T
—pPolicy evaluation when T (and R) unknown --- reca

= Model-based:
= Learn the model empirically through experience
= Solve for values as if the learned model were correct @—

= Model-free:

= Direct estimation:
/f = V(s) = sample estimate of sum of rewards accumulated from state s onwards

= Temporal difference (TD) value learning:
= Move values toward value of whatever successor occyrs: running average!
———— _ g‘”"#e R Ry;
sample = R(s,7(s),s") + vV (s") = es\ ke ‘1\] (s
V(s) = (1=)V7(6) +(@)somple

24

