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CS 188: Artificial Intelligence
Spring 2010

Lecture 11: Reinforcement Learning

2/23/2010

Pieter Abbeel – UC Berkeley

Many slides over the course adapted from either Dan Klein, 

Stuart Russell or Andrew Moore
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Announcements

� P0 / P1 / W1 / W2 in glookup

� If you have no entry, etc, email staff list!

� If you have questions, see one of us or email list.

� W1, W2: can be picked up from 188 return box in 283 
Soda

� W3: Utilities --- Due Thursday.

� Recall: readings for current material

� Online book: Sutton and Barto

http://www.cs.ualberta.ca/~sutton/book/ebook/the-book.html
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Announcements II

� Section:

� 101: Tue 3-4pm, 285 Cory 

� 104: Tue 4-5pm, 285 Cory 

� 102: Wed 11-noon, 285 Cory 

� 103: Wed noon-1pm, 285 Cory 
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MDPs recap

� Markov decision processes:
� States S

� Actions A
� Transitions P(s’|s,a) (or T(s,a,s’))

� Rewards R(s,a,s’) (and discount γ)

� Start state s0

� Solution methods:

� Value iteration (VI)

� Policy iteration (PI)

� Asynchronous value iteration  

� Current limitations:

� Relatively small state spaces

� Assumes T and R are known
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MDP Example: Grid World

� The agent lives in a grid

� Walls block the agent’s path

� The agent’s actions do not always 

go as planned:

� 80% of the time, the action North 

takes the agent North 
(if there is no wall there)

� 10% of the time, North takes the 
agent West; 10% East

� If there is a wall in the direction the 

agent would have been taken, the 
agent stays put

� Rewards come at the end

� Goal: maximize sum of rewards

MDP Example: Grid World

MDP = (S, A, T, R, s0, γγγγ)

Set of actions A

Set of states S

Transition model T

Initial state s0

Discount factor γ
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Value Iteration

� Idea:
� Vi(s) : the expected discounted sum of rewards accumulated 

when starting from state s and acting optimally for a horizon of i
time steps.

� Start with V0(s) = 0, which we know is right (why?)

� Given Vi, calculate the values for all states for horizon i+1:

� This is called a value update or Bellman update

� Repeat until convergence

� Theorem: will converge to unique optimal values
� Basic idea: approximations get refined towards optimal values

� Policy may converge long before values do
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Complete procedure

1. Run value iteration (off-line)

Returns V, which (assuming sufficiently many iterations 

is a good approximation of V*)

2. Agent acts.  

At time t the agent is in state st and takes the action at:
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MDPs recap

� Markov decision processes:
� States S

� Actions A
� Transitions P(s’|s,a) (or T(s,a,s’))

� Rewards R(s,a,s’) (and discount γ)

� Start state s0

� Solution methods:

� Value iteration (VI)

� Policy iteration (PI)

� Asynchronous value iteration  

� Current limitations:

� Assumes T and R are known

� Relatively small state spaces
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Reinforcement Learning

� Reinforcement learning:

� Still assume an MDP:

� A set of states s ∈ S

� A set of actions (per state) A

� A model T(s,a,s’)

� A reward function R(s,a,s’)

� Still looking for a policy π(s)

� New twist: don’t know T or R

� I.e. don’t know which states are good or what the actions do

� Must actually try actions and states out to learn
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Example: learning to walk

Before learning (hand-tuned) One of many learning runs After learning
[After 1000 

field 
traversals]

[Kohl and Stone, ICRA 2004]

Passive Learning

� Simplified task
� You don’t know the transitions T(s,a,s’)

� You don’t know the rewards R(s,a,s’)

� You are given a policy π(s)

� Goal: learn the state values

� … what policy evaluation did

� In this case:
� Learner “along for the ride”

� No choice about what actions to take

� Just execute the policy and learn from experience

� We’ll get to the active case soon

� This is NOT offline planning!  You actually take actions in the 
world and see what happens…
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Recap: Model-Based Policy Evaluation

� Simplified Bellman updates to 
calculate V for a fixed policy:
� New V is expected one-step-look-

ahead using current V
� Unfortunately, need T and R

14

π(s)

s

s, π(s)

s, π(s),s’

s’

Model-Based Learning

� Idea:
� Learn the model empirically through experience
� Solve for values as if the learned model were correct

� Simple empirical model learning
� Count outcomes for each s,a

� Normalize to give estimate of T(s,a,s’)

� Discover R(s,a,s’) when we experience (s,a,s’)

� Solving the MDP with the learned model
� Iterative policy evaluation, for example

15

π(s)

s

s, π(s)

s, π(s),s’

s’

Example: Model-Based Learning

� Episodes:

x

y

T(<3,3>, right, <4,3>) = 1 / 3

T(<2,3>, right, <3,3>) = 2 / 2

+100

-100

γ = 1

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100 

(done)
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Model-Free Learning

� Want to compute an expectation weighted by P(x):

� Model-based: estimate P(x) from samples, compute expectation

� Model-free: estimate expectation directly from samples

� Why does this work?  Because samples appear with the right 

frequencies!
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Example: Direct Estimation

� Episodes:

x

y

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

V(2,3) ~ (96 + -103) / 2 = -3.5

V(3,3) ~ (99 + 97 + -102) / 3 = 31.3

γ = 1, R = -1

+100

-100
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Sample-Based Policy Evaluation?

� Who needs T and R?  Approximate the 
expectation with samples (drawn from T!)
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π(s)

s

s, π(s)

s1’s2’ s3’

s, π(s),s’

s’

Almost!  But we only 

actually make progress 

when we move to i+1.
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Temporal-Difference Learning

� Big idea: learn from every experience!

� Update V(s) each time we experience (s,a,s’,r)

� Likely s’ will contribute updates more often

� Temporal difference learning

� Policy still fixed!

� Move values toward value of whatever 

successor occurs: running average!
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π(s)

s

s, π(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Exponential Moving Average

� Exponential moving average 

� Makes recent samples more important

� Forgets about the past (distant past values were wrong anyway)

� Easy to compute from the running average 

� Decreasing learning rate can give converging averages
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Policy evaluation when T (and R) unknown --- recap

� Model-based:
� Learn the model empirically through experience

� Solve for values as if the learned model were correct

� Model-free:

� Direct estimation: 

� V(s) = sample estimate of sum of rewards accumulated from state s onwards

� Temporal difference (TD) value learning: 

� Move values toward value of whatever successor occurs: running average!
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